M-math 1st year Mid Semester Exam Subject : Functional Analysis

Time: 3 hours Max.Marks 100.

1. Let (H, <, >) be a Hilbert space. A map $B: H \times H \to \mathbb{C}$ is said to be sesquilinear iff it is linear in the first variable and conjugate linear in the second variable. Define

$$||B|| := \sup_{\|x\| \le 1, \|y\| \le 1} |B(x, y)|.$$

Say that B is bounded if $||B|| < \infty$; is symmetric if $B(x,y) = \overline{B(y,x)}$; is non negative if $B(x,x) \ge 0$; is definite if B(x,x) = 0 implies x = 0.

- a). If B is bounded, show that there exists a unique bounded linear operator A on H such that $B(x, y) = \langle x, Ay \rangle$ and that ||B|| = ||A||. (15)
- b) Verify that if B is symmetric, non negative and definite then B defines an inner product on H. (10)
- c) If B is symmetric and non negative, show that the Schwartz inequality holds: for every $x, y \in H$,

$$|B(x,y)|^2 \le B(x,x)B(y,y).$$
 (15)

- 2. Let M_n be the space of $n \times n$ matrices over \mathbb{C} , considered as bounded linear operators on \mathbb{C}^n . let $GL_n(\mathbb{C})$ be the group of $n \times n$ invertible matrices and let U be an open subset of $GL_n(\mathbb{C}) \subset M_n$. Define $J: U \to M_n$ by $J(A) := A^{-1}$. Show that J is Fréchet differentiable at all $A \in U$ and that if $H \in M_n$ then $J'(A)H = -A^{-1}HA^{-1}$ (15)
- 3. Let $(V, \|.\|)$ be a Banach space and X = C([0, 1], V) the space of continuous functions from [0, 1] with values in V. For $f \in X$, define $\|f\|_X := \sup_{t \in [0, 1]} \|f(t)\|$. Show that $\|.\|_X$ is well defined and is a norm on X. Show that $(X, \|.\|_X)$ is a Banach space. (15)

- 4. Let V be a normed linear space and V^* its dual. For any subspace $Z \subset V^*$ and $f \in V^*$ define $d(f,Z) := \inf_{g \in Z} \|f g\|_{V^*}$. Let $W \subset V$ be a subspace and define $W^{\perp} := \{g \in V^* : g(x) = 0 \ \forall x \in W\}$.
- a) Show that W^{\perp} is a closed subspace of V^* . (10).
- b) Let $f \in V^*$. Show that $d(f, W^{\perp}) = ||f_0||_{W^*}$, where $f_0 \in W^*$ is the restriction of $f \in V^*$ to W. (15)
- 5. Let V be a normed linear space. Show that finite dimensional subspaces of V can be complemented i.e. if $W \subseteq V$ is finite dimensional, then there exists a closed subspace $Z \subseteq V$ such that $V = W \bigoplus Z$. (15)